This paper summarizes empirical evidence from public choice theories and presents new evidence on the influence of unemployment and partisan bias in Austria. Download the paper from here http://sdrv.ms/18WvKgN
The dataset comes from the European Election Database and Eurostat.
Using the eurostat_r library (get it here: https://github.com/toprach/eurostat_r) and the following r script you can replicate the table in the paper.
The data sources allow for easy repetition of the analysis for other countries.
library(foreign)
library(data.table)
library(texreg)
library(estout)
library(stargazer)
library(plm)
#http://129.177.90.166/nesstar/temp/download69627.tmp/BEEP2009_Download.zip
#http://129.177.90.166/nesstar/temp/download69627.tmp/BEEP2004_Download.zip
election=data.table(read.csv("election.csv"))
setnames(election,"NUTSID","GEO")
setnames(election,"Year","time")
election[,SPO:=SPO/Validvotes*100]
election[,OVP:=OVP/Validvotes*100]
election[,FPO:=FPO/Validvotes*100]
election[,BZO:=BZO/Validvotes*100]
election[,Grune:=Grune/Validvotes*100]
election[,other:=100-(SPO+OVP+FPO+BZO+Grune)]
election[,KPO:=KPO/Validvotes*100]
election[,left:=SPO+Grune]
election[,right:=OVP+FPO+BZO]
election[time==1999 | time==2002, BZO:=NA]
source("C:/git/eurostat_r/eurostat_r.r")
unemp=read.eurostat("lfst_r_lfu3rt")
bip=read.eurostat("nama_r_e3gdp")
setnames(unemp,"value","unemp")
setnames(bip,"value","gdp")
unemp$flag=NULL
bip=bip[UNIT=="EUR_HAB_EU",list(GEO,time,gdp)]
j=join(election,unemp)
j=join(j,bip)
j=j[SEX=="T" & AGE=="Y_GE15",]
level2=j[NUTSlevel==2,]
level1=j[NUTSlevel==1,]
j=j[ NUTSlevel==3,]
j$GEO=as.factor(as.character(j$GEO)) # remove unused factors of level 1,2
table(j[,list(time,GEO)])
plmdata=plm.data(j, index=c("GEO","time"), model="twoways")
p_s=plm(SPO ~ unemp ,data=plmdata)
p_o=plm(OVP ~ unemp ,data=plmdata)
p_f=plm(FPO ~ unemp ,data=plmdata)
p_b=plm(BZO ~ unemp ,data=plmdata)
p_g=plm(Grune ~ unemp ,data=plmdata)
p_l=plm(left ~ unemp ,data=plmdata)
p_r=plm(right ~ unemp ,data=plmdata)
sink("unempvotesplm.tex")
s=stargazer(p_s,p_g,p_o,p_f,p_l,omit=levels(j$GEO),
title="How unemployment influences elections",
intercept.top=TRUE,covariate.labels="unemployment")
sink()
p_s=plm(SPO ~ gdp ,data=plmdata)
p_o=plm(OVP ~ gdp ,data=plmdata)
#the level of gdp does not change the votes
summary(lm(SPO ~ gdp + GEO ,j))
summary(lm(OVP ~ log(gdp) + GEO ,j))
summary(lm(FPO ~ log(gdp) + GEO ,j)) # when unemp high is then FPO gets - other things equal -less votes
######################## graph for median voters
windows(width=7,height=4)
x=seq(-2,2,length=200)
y=dnorm(x)
plot(x,y,type="l", lwd=2, col="blue", axes=F,xlab="",ylab="",
main="Distribution of voter preferences\n and party positions")
x=seq(-1,1,length=100)
y=dnorm(x)
polygon(c(-1,x,1),c(0,y,0),col="gray")
axis(1,labels=F)
axis(1,at=c(-1,0,1),labels=c("Left","Median","Right"))
savePlot(filename="distrvoters.png",type="png")
dev.off()
######################################################################
##election denmark
fetchfile=function(x){
data.table(read.csv(x))
}
files=c("DKPA1994_Download_F1.csv",
"DKPA1998_Download_F1.csv",
"DKPA2001_Download_F1.csv",
"DKPA2005_Download_F1.csv",
"DKPA2007_Download_F1.csv")
library(plyr)
election=data.table(ldply(files,fetchfile))
unemp=read.eurostat("lfst_r_lfu3rt")
setnames(election,"NUTSID","GEO")
setnames(election,"Year","time")
j=join(election,unemp)
j=j[SEX=="T" & AGE=="Y_GE15",]
j=j[GEO!="DK" & GEO!="DK0" ,]
j=j[ NUTSlevel==3,]
j$GEO=as.factor(as.character(j$GEO)) # remove unused factors of level 1,2
Keine Kommentare:
Kommentar veröffentlichen